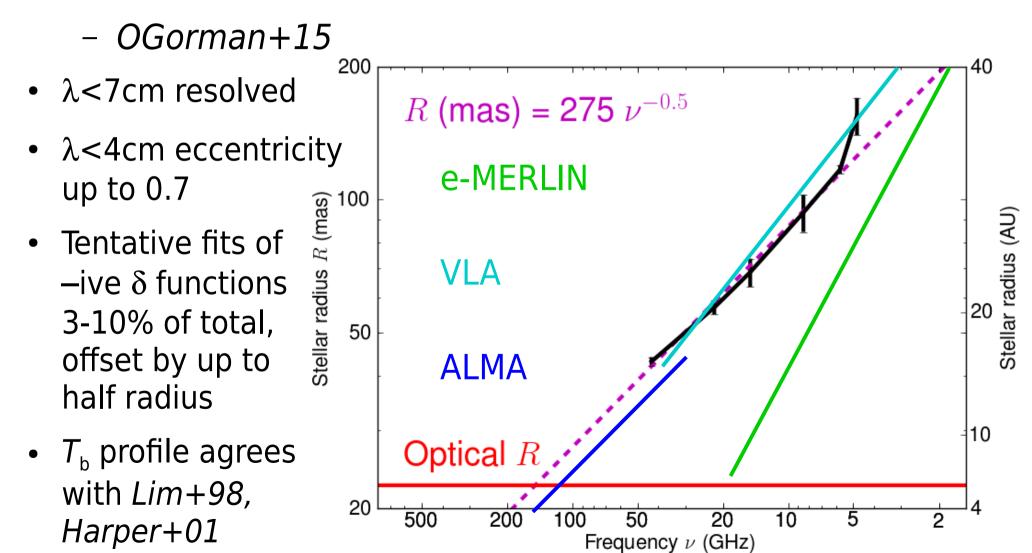
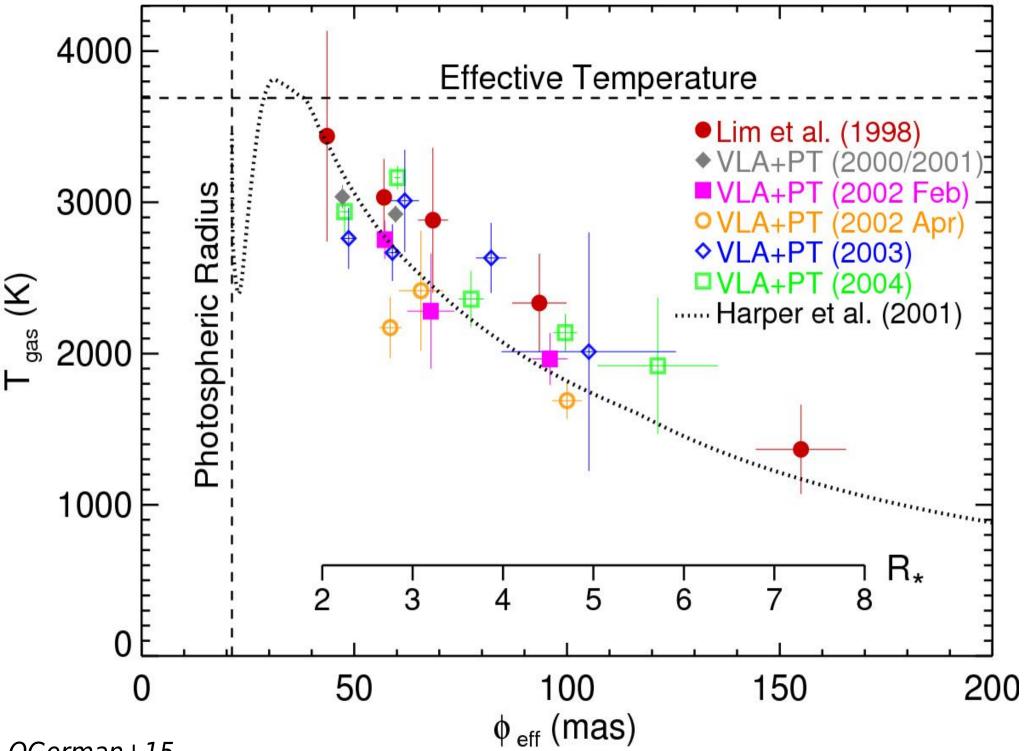
Recent cm-wave observations

Anita Richards, JBCA, Manchester Decin, Etoka, Harper, Kervella, Lim, Garrington, Gray, McDonald, O'Gorman, Wittkowski et al.

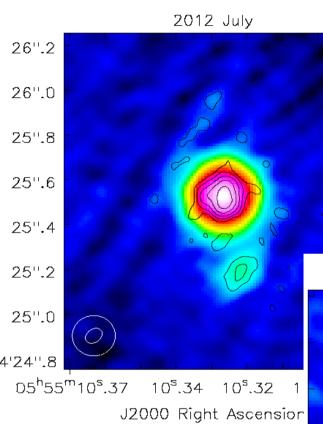
> Some VLA highlights O'Gorman et al. 2015 E-MERLIN 2012-2015 (and a correction)




EUROPEAN ARC ALMA Regional Centre || UK

VLA+Pie Town monitoring

• 2000 - 2004, λ 0.7 - 20.5 cm, resolution 0".04-1".2



OGorman+15

e-MERLIN at 5.75 GHz (5.2 cm)

- 2012 July, 2015 March, June
 - ~8 hr useful per epoch
 - 400 MHz effective b/w
 - 15-20 mas astrometry
 - Few mas relative accuracy
 - rms 15-20 μJy/bm
 - 10% flux scale accuracy
 - Re-reduced 2012 data with correct Cm axis offset
 - Richards+13 incorrect
- Image at 180-mas resolution
 - Measure whole star
 - Radius ~4.4 R_{*}
- Image at 78x57 mas²
 - Subtract peak, measure residuals

	2012	2015	2015
	Jul	Mar	Jun
Tot. flux (mJy)	2.78	2.39	2.35
Area	204 x	212 x	201 x
(mas ²)	195	198	189
Т _ь (К)	2650	2120	2300
	(310)	(225)	(230)
Resid. min (mJy/bm)	-0.15	-0.25	-0.12
Resid. max (mJy/bm)	0.23	0.21	0.17

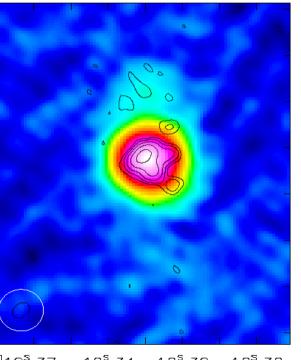
78x57 mas² contours (-1,1,2,4... x50 µJy/bm) over 180-mas resolution disc

e-MERLIN

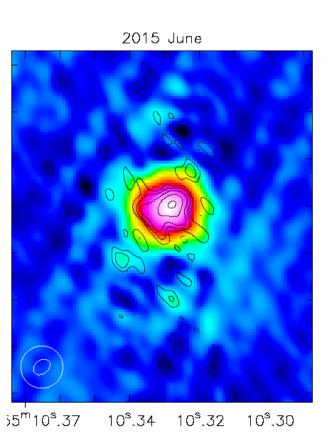
2.2

2

1.8

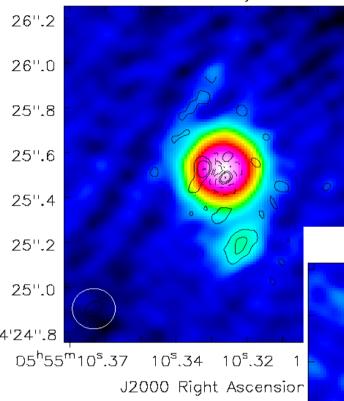

1.6

1.4


1.2

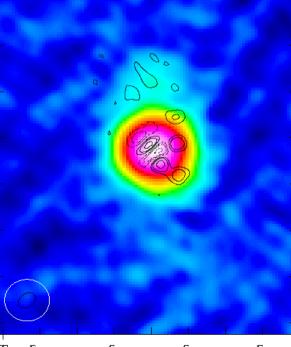
2015 March

- Proper motions broadly consistent with *Harper+06* (25, 10 mas/yr) but
 - 35-mas Dec discrepancy in 2015
 - Changing hot spot positions
 - Phase transfer errors

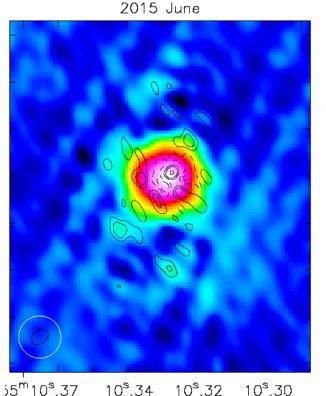

5^m10^s.37 10^s.34 10^s.32 10^s.30 J2000 Right Ascension

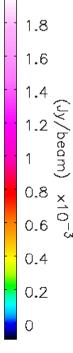
1.8 1.6 1.4 Jy/beam) 0.8 × 0 0.6 0.4 0.2 0

Residual hot/cold spots



Residual contours (-1,1,2,4... x50 µJy/bm) over 180-mas resolution disc


2 1.8 1.6 1.4 1.2


2015 March

5^m10^s.37 10⁵.34 10⁵.32 10⁵.30 J2000 Right Ascension

- 2.2 Subtract high-resolution Gaussian
 - ~7 residuals >6 σ within disc
 - Up to ±~10% flux density
 - Location errors \geq (10, 15) mas
 - Unresolved
 - Maybe clustered smaller comps

Hotspots believable?

- uv coverage similar all 3 epochs
 - Noise distribution Gaussian
- Subtracted CC from calibrated data
 - Added Gaussian model full stellar disc
 - Imaged, recovered similar
 - Added collection of δ functions
 - Recovered beam-size residuals
 - Added CC to 2015A from 2015B
- Flux scale errors
 - Attenuator setting issues in 2012
- Phase/amp referencing errors
 - Low elevation atmosphere
 - Attenuator and delay jumps, chunking 7°24'25".3
- Excess random errors, not major artefacts

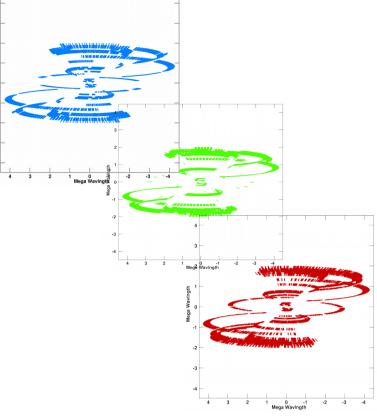
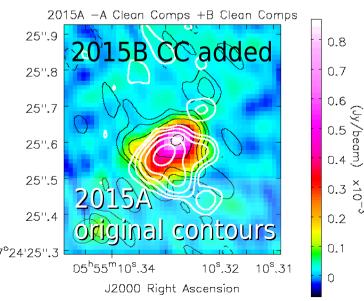
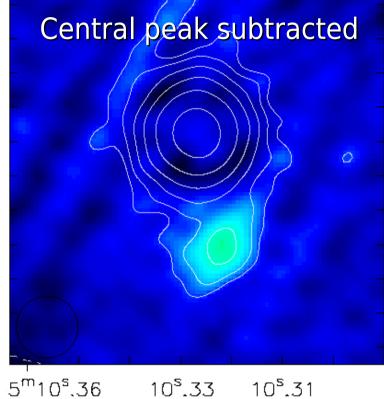
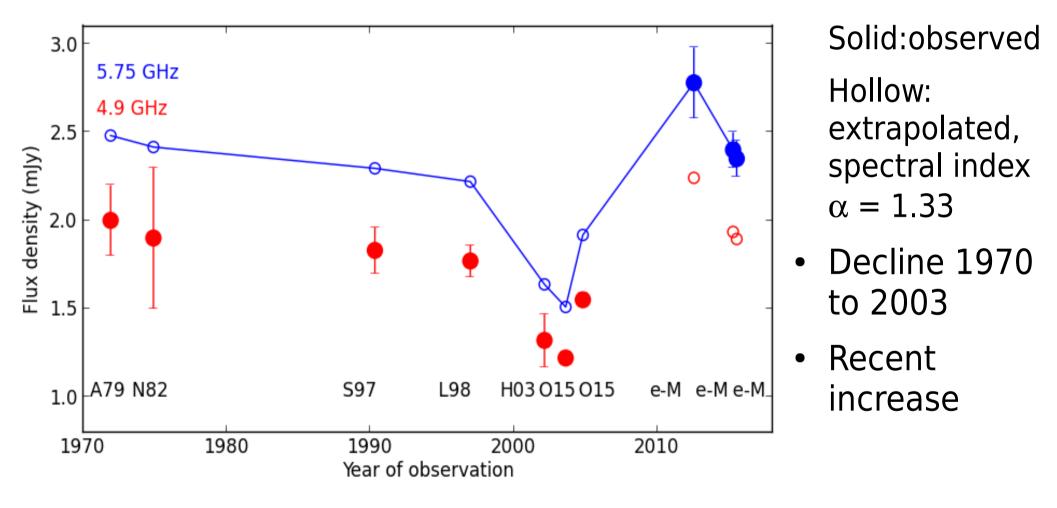



Image looks like 2015B

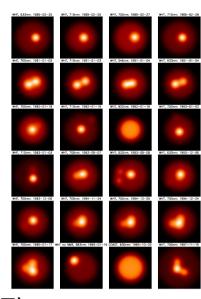

2000 Declination

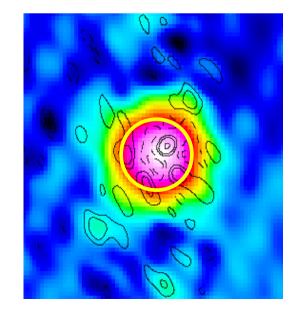
SW blob


- SW residual after subtracting Gaussian
 - Centre 0".35 ($15R_*$) from star
 - Total flux density 190 μJy in 0.063 asec²
 - Blob $T_{\rm B}$ 125±40K
 - Approximately spherical?
 - Radius 125 mas ~25 au
- n_H~16x10¹² m⁻³, n_e~15x10⁹ m⁻³, T_e~525 K (Harper+2001)
 - Implies $\tau \sim 0.0025$
 - H mass ~2.2x10 $^{\text{-6}}$ M $_{\odot}$
 - One such clump ejected every couple of years?
 - BUT not seen properly in 2015
 - However, noisier data

J2000 Right Ascension

Long-term variability at λ 5-6cm


 Altenhoff+79 (Efflesburg), Newell+82, Skinner+97, Lim+98 (all VLA), Harper+03, O'Gorman+15 (VLA+Pie Town), e-MERLIN


Radio variability

- ~25% variability in months at $\lambda > 1$ cm
 - More stable at 0.7 cm *Drake*+'92, *OGorman*+'15
- No obvious correlation between λ or with R_*
 - Too rapid for global pulsation/mass loss effects?
- Chemistry/ionisation threshold changes? Harper & Linsky 2001
- Observed 1.3-cm surface $\sim 1.5-2.5 R_*$ (predicted 1.8 R_*)
 - Variability correlates w. V-band (400-d period) OGorman+'15
 - Pulsation shocks strongly damped within 2 R_*
 - Heating > increased radiation field
 - Rapid recombination and photo-ionisation of metals
 - Ionising radiation shines through to 5-cm layer?
 - But not back to optically thicker 0.7-mm layer?

Starspots

- λ 5.2 cm radius ~100 mas
 - $\sim 4.5 \times \text{optical } R_*$
 - Optical: 1-3 compact spots, 1989-1997 (*Tuthill*+97)
- Same origin, expanding in more extended layers?
- Actual size 5-cm spots unclear, \leq 60 mas, maybe \ll
- Probably $\leq 10\% T_{\rm b}$ fluctuations
- Appearance changes in months
 - Heating/cooling, imaging distortion
 - Not measurable proper motion
- Convection? Up/down draughts?
- You tell me!!???

