Surface and Circumstellar Magnetism of Cool Evolved Stars recent results and open questions

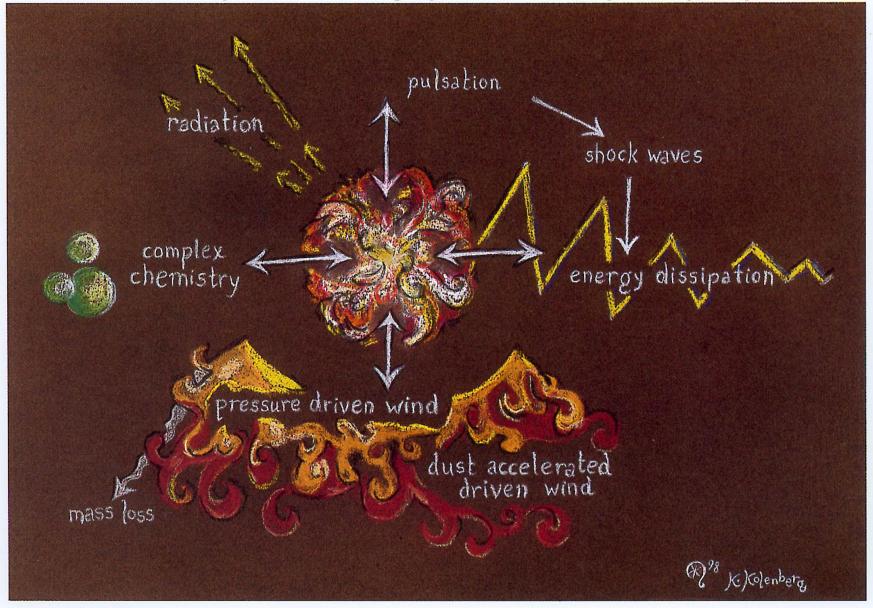
ESPaDOnS@CFHT

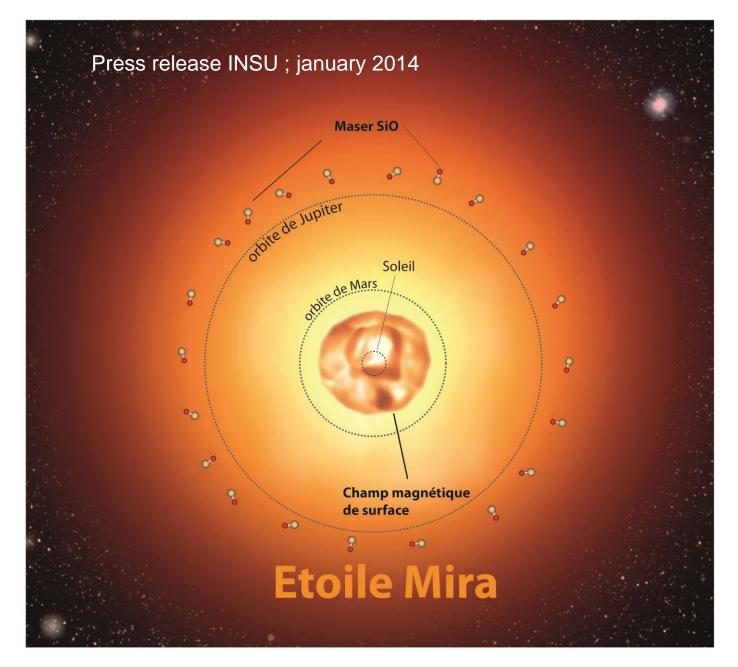
Narval@TBL

30m@IRAM

ALMA@ESO

Agnès Lèbre, University of Montpellier, France <u>Agnes.Lebre@umontpellier.fr</u>





The old AGB picture ! IAU Symposium in Montpellier (1998)

Betelgeuse - 5-8 September 2016 - CIES Meudon

-Cool Evolved stars : sharing main characteristics and physical processes

- Magnetism in Circumstellar Envelopes (Radioastronomy)
- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - -RGB & early-AGB magnetic fields

Active giants (global dynamo) Descendant of Ap stars (magneto-convection)

- -TP-AGB magnetic fields (Mira stars)
- -Post-AGB stars (RV Tauri stars) / PN magnetism
- -RSG magnetic fields (special focus : Betelgeuse)

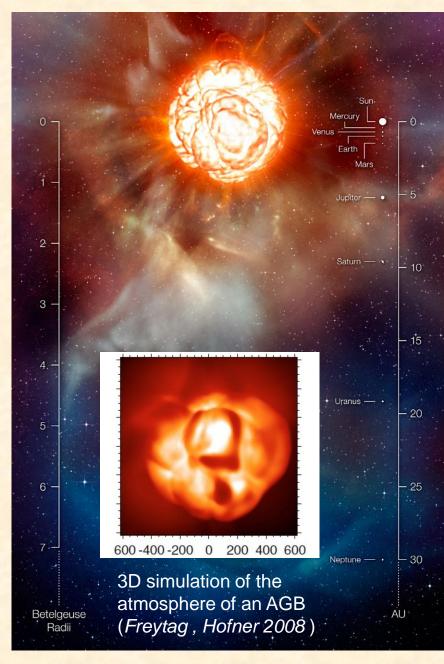
Turbulent dynamo

Amplification by shock waves ?

- Perspectives and New Challenges

Cool Evolved Stars

Main characteristics :


RGB, RSG stars : core He-burning phase AGB stars : He- and H-shell burning phase Teff = 4000-2500 K; log g = 0 - 2

Convection :

Large-scale convective motions in an extended atmosphere, with a few giant cells covering the surface (Schwarzschild, 1975)

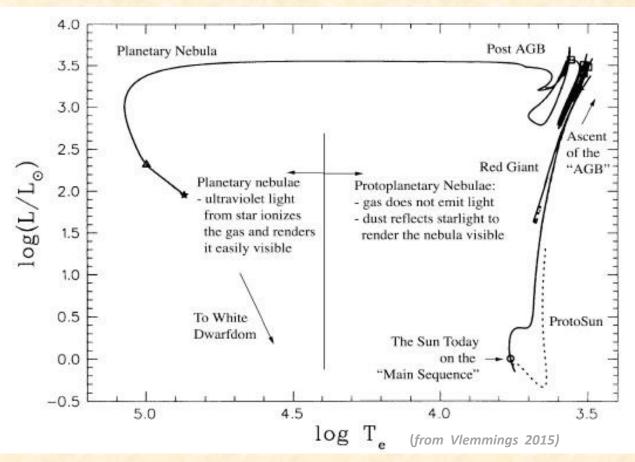
Radiative hydrodynamic simulations (Chiavassa+ 2010)

In RSG : convection is expected to generate supersonic motions and shocks In AGB (Miras) : pulsation is expected to generate shocks (also in some Post-AGB) => convection-pulsation

Cool Evolved Stars

Convection

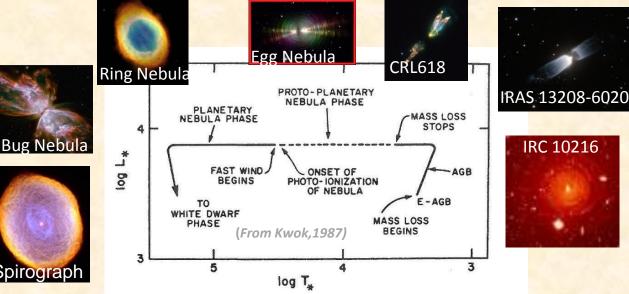
Large-scale convective motions in an extended atmosphere, with few giant cells covering the surface (Freytag & Höfner, 2008)


Pulsation (Mira/RV Tauri) periodically generate radiative shocks waves => convection-pulsation

Mass loss

Heavy mass loss : radiation pressure on dust (*Höfner, 2011*) levitation due to shocks

WHAT ELSE ... ?


Evolutionary path of an **intermediate mass star** before its transition toward the Planetary Nebulae stage.

Cool Evolved Stars

(HST images)

During the transition from AGB to PN :

- Severe change of the morphology of the circumstellar envelope (departure from spherical symmetry)
- Evidences of magnetically collimated oulflows **Binarity ? Magnetic fields ? Both ?**

and

Observational evidences of magnetic fields around AGB, post-AGB, pre-PNe and PNe

Magnetic Fields at the Surface of cool and evolved stars?

-Cool Evolved stars : sharing main characteristics and physical processes

- Magnetism in Circumstellar Envelopes (Radioastronomy)
- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - -RGB & early-AGB magnetic fields
 - -TP-AGB magnetic fields (Mira stars)
 - -Post-AGB stars (RV Tauri stars) / PN magnetism
 - -RSG magnetic fields (special focus : Betelgeuse)
- Perspectives and New Challenges

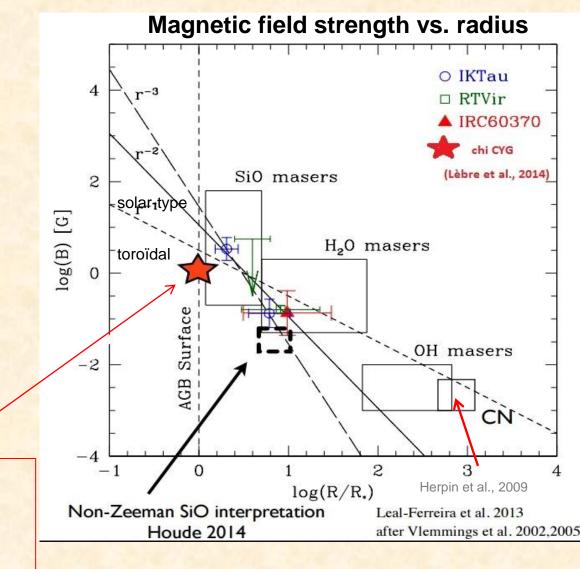
Circumstellar Magnetic Fields

Magnetic field strength and structure from

Circular polarization (generated through Zeeman splitting) => Line of sight component of Magnetic Field + constraints on its geometry

Schematic view of an AGB star Best tracers nukleomolecule formation dust formation mixing photochemical reactions (compactness and strength) : synthesis Sio Maser H₂O Maser OH Maser 10-1000 days maser circular polarization 0.1-1 mag 10⁻⁸-10⁻⁴ M_/year s-process (sub)-mm regime $OH \rightarrow O + H$ silicates. VO, H₂O, CO $H_2O \rightarrow OH + H$ Ma/Al-oxides -----C/O<1 TIO, SIO interstella thermal CO H₂, CO radiation field typical molecules pulsating windconvective circumstellar envelope degenerate ISM probing different zones in CSE CO core with stellar wind envelope atmosphere acceleration shock waves SiO, H₂O, OH for O-rich stars C/O>1 CN, C2, amorphous HCN, C₃, C₂H₂ carbon, SiC $HCN \rightarrow CN +$ $CN \rightarrow C + N$ **CN lines** for C-rich stars burning H/He-2-30 km/s 2-20 km/s shell (Herpin, 2009 + PhD. A. Duthu) 1rst attempt to detect 10¹⁴ 10¹³ 10¹⁸ 10 r [cm] Zeeman splitting 108 1000 3000 20 T [K] of non-maser molecular lines 106-9 10³⁰ 10¹³ 0.1-10 n [cm 1R_{sun}~7.10¹⁰, 1AU~1.5.10¹³, 1pc~3.10¹⁸cm

⁽From J. Hron)


Magnetic Field strength in AGB envelopes

O-rich Miras : SiO at 2 R* B ~ 3.5 (up to 10s) G Assuming Zeeman H_20 at ~ 5-80 AU B ~ 0.1 - 2 G OH at 100-10 000 AU B ~ 1-10 mG

C-rich Miras : CN at ~ 2 500 AU B ~ 7-10mG

Geometry of the field : Toroidal field B ~ 1/r

→ Extrapolation ? the magnetic field strength at the stellar surface of Miras could be of the order of a few G.

Circumstellar Magnetic Fields

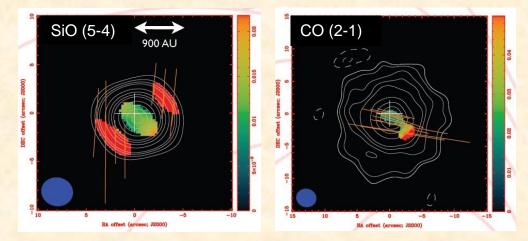
Magnetic field strength and structure from

Linear polarization (generated through anisotropy with/without magnetic field) => Structure of the plane of sky component of Magnetic Field

Observed both

-in the dust (through aligned grains) => strength of MF

- in the molecular lines (through radiation anisotropy and small Zeeman splitting) = Goldreich-Kylafis effect (Kylafis, 1983)


CO & SiO, H_2O , OH masers => 3D field morphology (in few specific cases)

e.g., 1rst map (SMA) of GK effect in CO lines on the Mira IK Tau (*Vlemmings+2012*) IK Tau shows consistent large scale field from thermal SiO out to CO(2-1)

On the Mira X Cyg (Tafoya, Vlemmings in prep.)

Now with ALMA!

Toward a full description of the circumstellar magnetic field structure !

Betelgeuse - 5-8 September 2016 - CIES Meudon

-Cool Evolved stars : sharing main characteristics and physical processes

- Magnetism in Circumstellar Envelopes (Radioastronomy)

- Surface Magnetic Fields (Spectropolarimetry)

- Tracing Zeeman effect with circular polarisation (Stokes V)

-RGB & early-AGB magnetic fields

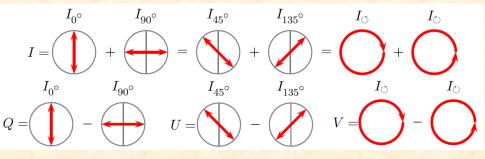
-TP-AGB magnetic fields (Mira stars)

-Post-AGB stars (RV Tauri stars) / PN magnetism

-RSG magnetic fields (special focus : Betelgeuse)

- Perspectives and New Challenges

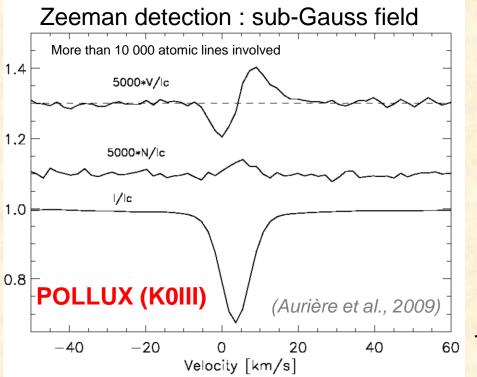
Surface Magnetic Fields (spectropolarimetry)



ESPaDOnS@CFHT 2004+ 3.60m Telescope Narval@TBL 2006+ 2mTelescope HARPSpol@ESO 2009+ 3.60m Telescope

Spectral Range : 375 – 1050 nm Spectral Resolution : 65 000 Spectral Range : 380 – 690 nm Spectral Resolution : 115 000

Simultaneous measurements in two polarisation states :


⇒ Stokes I (unpolarised) spectrum
+ Stokes V (circular)
or Stokes U (linear)
or Stokes Q (linear)

 \Rightarrow Polarisation (circular or linear) within spectral (atomic) lines Polarimetric sensitivity ~ 10⁻⁴ of the unpolarised continuum

Betelgeuse - 5-8 September 2016 - CIES Meudon

Tracing Zeeman Effect with Circular Polarisation

Mean Zeeman shift of a transition

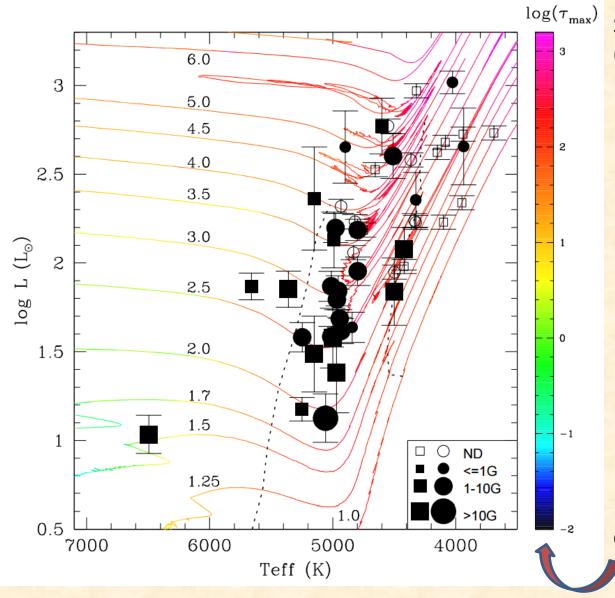
$$\Delta\lambda_B = \frac{\lambda_0^2 eB}{4\pi m_e c^2} = 4.67\times 10^{-12}\,\lambda_0^2\,g_{eff}B$$

g_{eff}: Landè factor (sensitivity of a transition to B)

If weak magnetic field (< 100 G) :

Polarised signatures undetectable at the level of individual lines

=> A multiplex approach over the observed spectral range (thousands of atomic lines involved through a LSD Mask)


The Least Square Deconvolution (L.S.D.) (Donati et al., 1997)

Estimation of BI, the Longitudinal Component of the Magnetic Field :

$$B_l(G) = -2.14 \times 10^{11} \frac{\int v V(v) \,\mathrm{d}v}{\lambda_0 g_{eff} c \int [I_c - I(v)] \,\mathrm{d}v}$$

First-order moment method (Rees & Semel, 1979) adapted to LSD profiles.

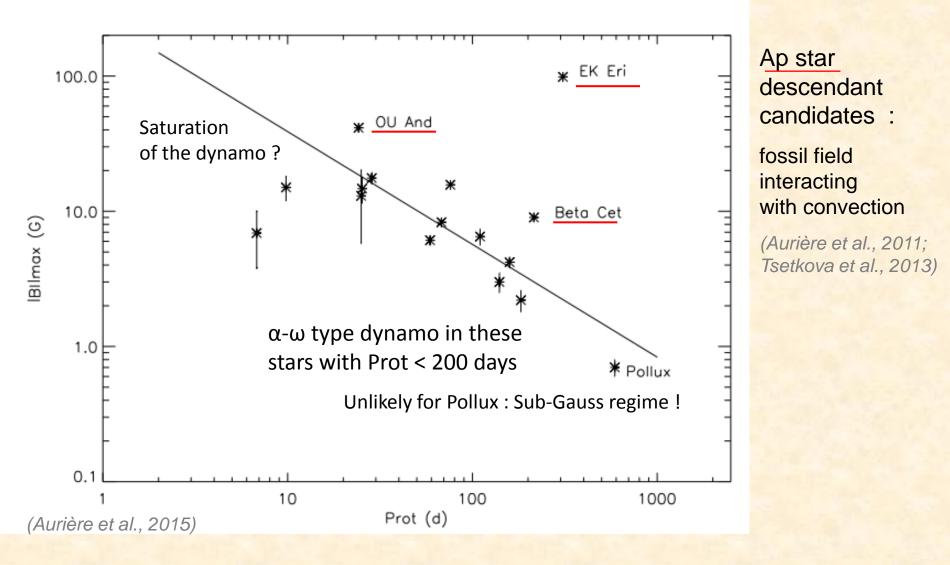
RGB & AGB surface magnetic fields (Aurière et al, 2015, A&A 574, A90)

Sample of 48 single G-K giants (24 with activity signatures)

29 Zeeman detections (with Narval/ESPaDOnS

The most active magnetic giants are concentrated in a

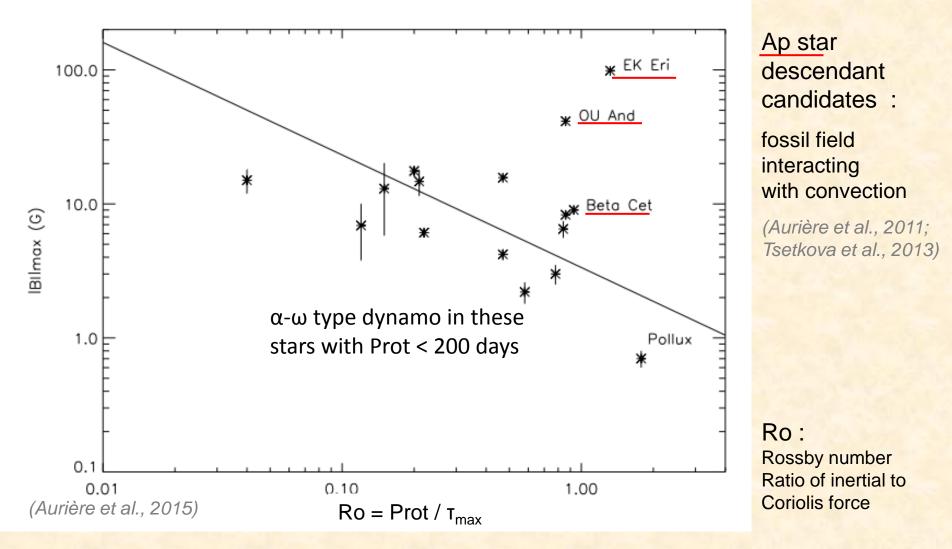
« Magnetic Strip » ?


1rst Dredge-up and Core Helium burning phases.

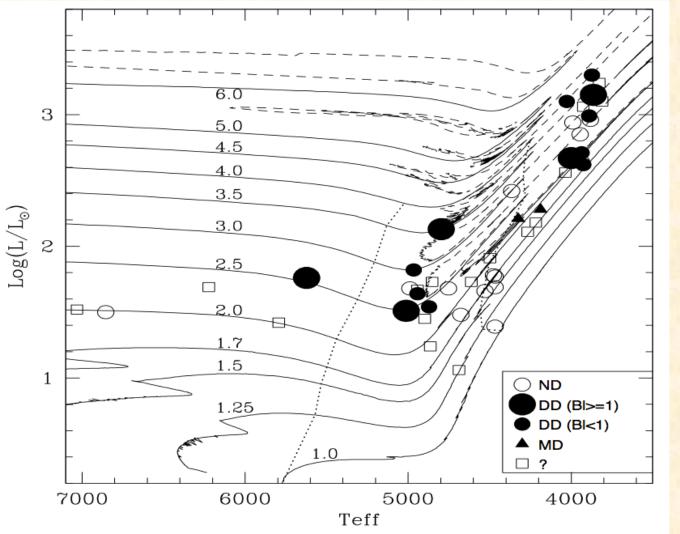
Evolutionnary models Solar metallicity with rotation (from C. Charbonnel et al.)

Convective turnover timescale $T_{max} = (\alpha H_p) / V_{conv}$

Preliminary trends with rotation from 16 G-K Giants


with known rotational period (Prot from few 10s of days to few 100s of days)

Betelgeuse - 5-8 September 2016 - CIES Meudon


Preliminary trends with rotation from 16 G-K Giants

with known rotational period (Prot from few 10s of days to few 100s of days)

Betelgeuse - 5-8 September 2016 - CIES Meudon

RGB & AGB surface magnetic fields (Konstantinova-Antova et al. 2014, UAI 302)

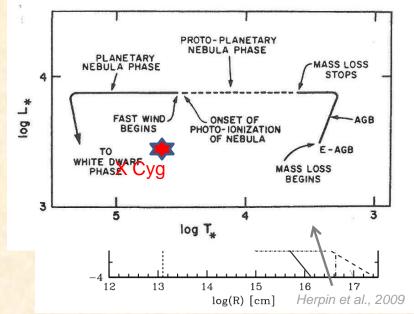
Exploration of unbiased sample (magV < 4)

40 Red Giants (with Narval/ESPaDOnS)

Magnetic RGB/AGB with Bl < 1 Gauss (e.g. Pollux)

- « 2nd magnetic strip » : Tip RGB / AGB
- low surface rotation
- convection
- \Rightarrow Local dynamo ?

Transitory fields ?


~ 50 % of RGB/AGB with a magnetic field at the Gauss level Magnetic field and activity is more common than expected !

Tip of AGB - Post-AGB stars -PNe

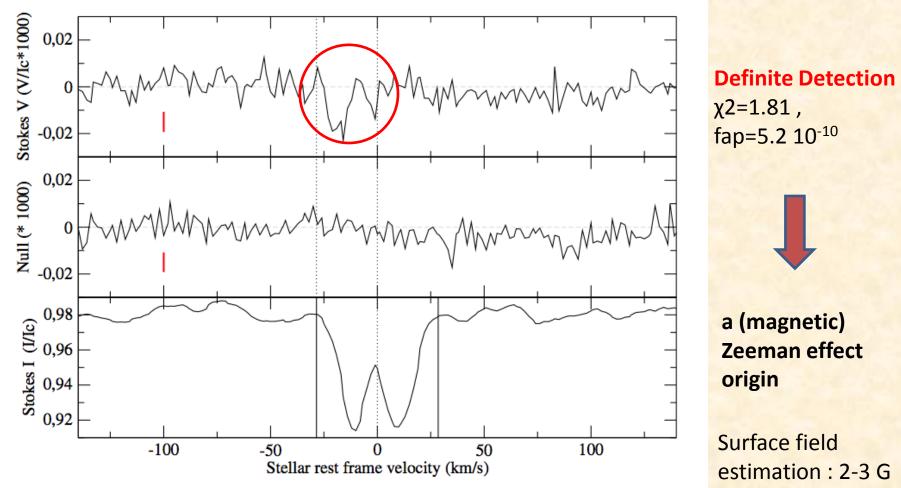
Detection of magnetic fields from Masers SiO & CN lines in their environment (*Vlemmings*+ 2011) => Geometry of the field : $B \sim 1/r$... (*Herpin et al. 2006, 2009; Sabin et al., 2013*) => Extrapolation toward the photosphere...

Mira Stars

Common picture :

Hydrogen emission lines (Balmer) => shock wave propagation (atmospheric dynamics) Time variable linear polarization associated to Balmer lines (Fabas et al., 2011)

o Ceti and R Leo (M-type Miras)


Photospheric magnetic field (~ a few G) expected from theoretical works (Thirumalai & Heyl, 2013) but not detected (so far ?) with Narval

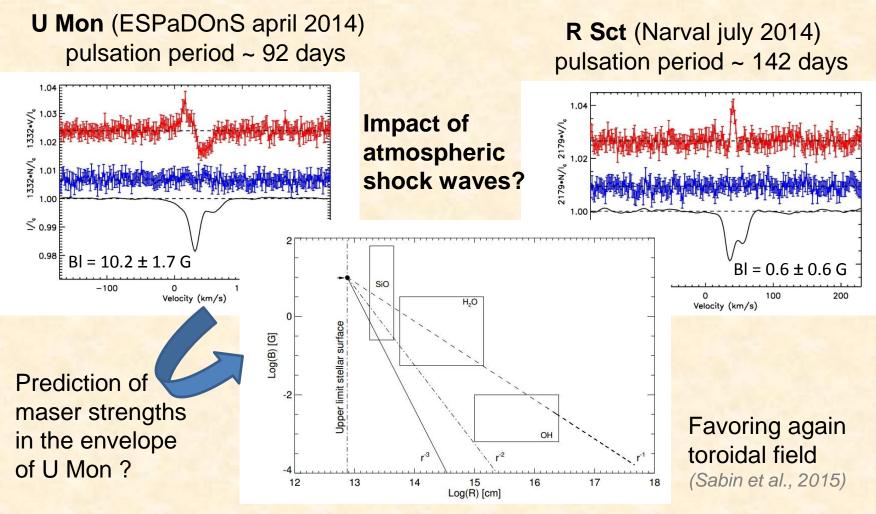
X Cyg (S-type Mira)

Detection of a weak photospheric magnetic field (*Lèbre et al., 2014*) => Connexion surface magnetic field - atmospheric shock wave

First detection of a surface magnetic field on a Mira star

Narval observations of χ Cyg around its 2012 maximum light

Stokes V signal : associated to the blue component of the I profile


Stokes I profile : typical line doubling of metallic lines due to a shock wave in the atmosphere.

(Lèbre et al. 2014, A&A 561, 85)

Post-AGB stars (incl. Pulsating RV Tauri stars)

RV Tauri stars

The first positive detections of a photospheric magnetic field (Sabin et al., 2015)

Betelgeuse - 5-8 September 2016 - CIES Meudon

Planetary Nebulae

small-scale structures due to magnetic fields e.g. Spirograph nebula (Huggins et al. 2011)

Central Star of Planetary Nebulae

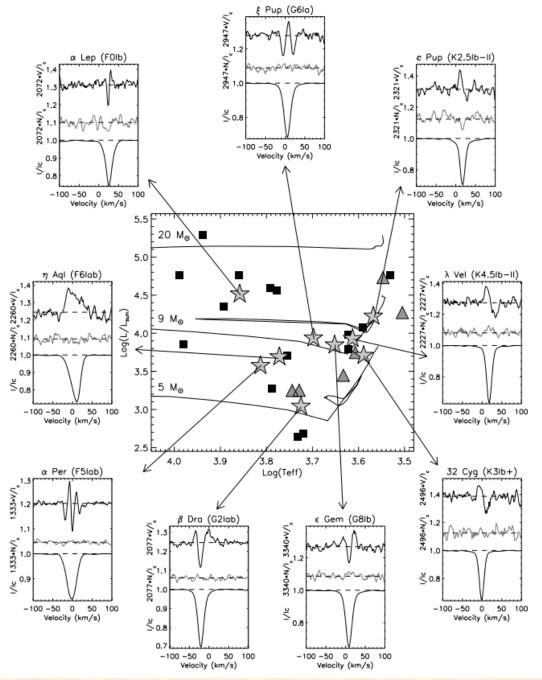
From FORS2@VLT (low resolution spectropolarimetry) : Early controversial detections (Jordan+2012 ; Leone+2014)

No strong global magnetic field (KG !) from a sample of 12 bright CSPN but marginal and weak fields (below 100 G) in 3 targets (*Steffen+2014*)

Magnetic PN Shaping still not proven !

Time to move to the massive counterparts ... RSG !

Magnetic fields in Red Super Giants (RSG)


Red Supergiants :

Are they all magnetic stars ?

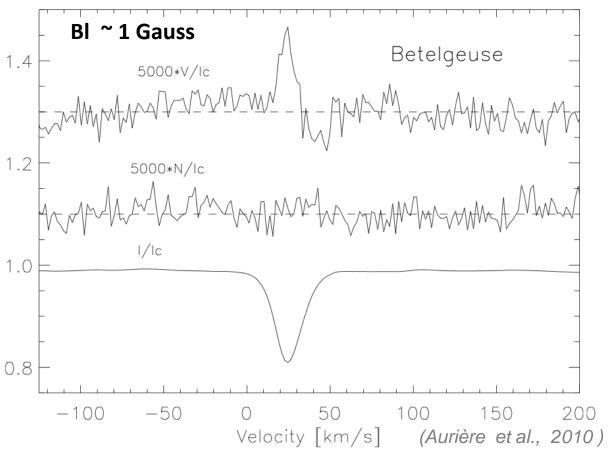
Common occurrence of magnetic fields at the (sub-)Gauss level in F- to K- type RSG.

(Grunhut et al. 2010)

In M-type RSG?

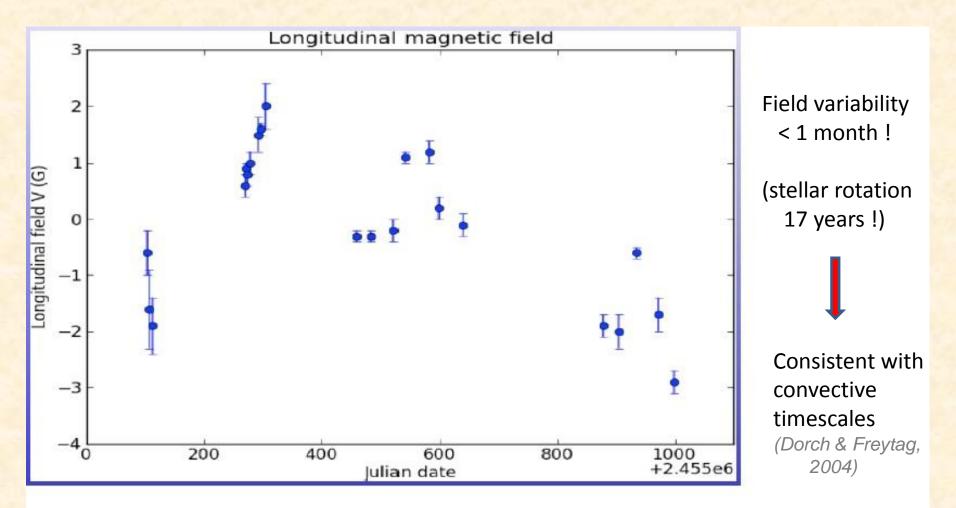
Betelgeuse - 5-8 September 2016 - CIES Meudon

Detection of Surface Field in Betelgeuse (M-type RSG)


P_{rot} = 17 years (Kervella et al., 2009)

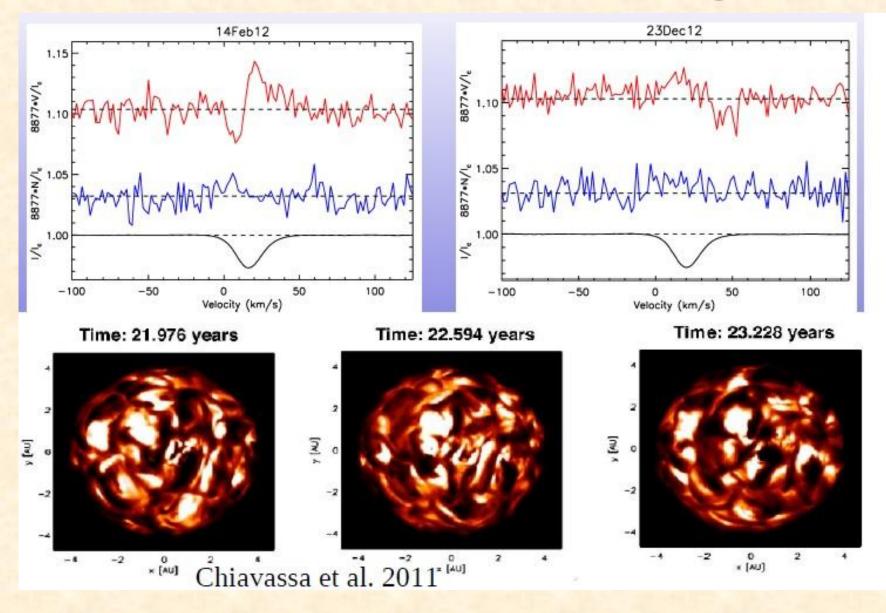
Ro ~ P_{rot} / T conv

=> R_o ~ 90

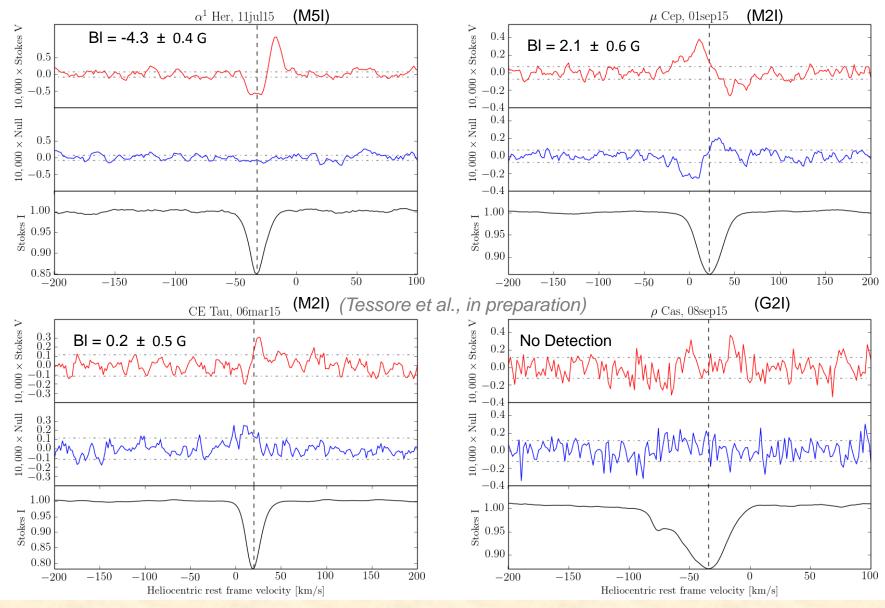

not able to sustain a α-ω type dynamo

The large-scale convective motions can generate small-scale dynamo action, and thus transitory fields.

Geometry of magnetic field remains unknown !


Variations of the Magnetic Field of Betelgeuse (2009-2012)

(Bedecarrax et al., 2013) + long term monitoring in progress with a Large program Narval

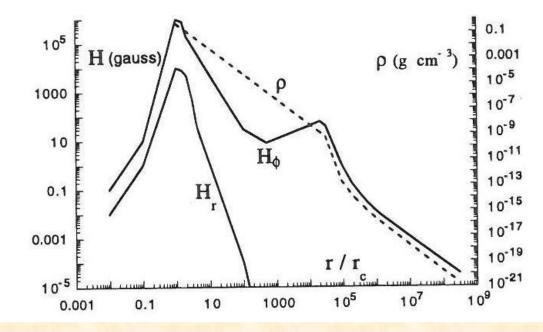

(Mathias et al., in preparation)

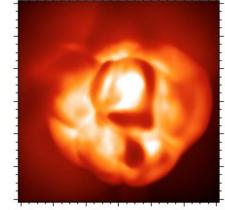
Field Variations at the Surface of Betelgeuse

Betelgeuse - 5-8 September 2016 - CIES Meudon

New DetectionS of Surface Field in other M-type RSG

Betelgeuse - 5-8 September 2016 - CIES Meudon


-Cool Evolved stars : sharing main characteristics and physical processes


- Magnetism in Circumstellar Envelopes (Radioastronomy)
- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - -RGB & early-AGB magnetic fields
 - -TP-AGB magnetic fields (Mira stars)
 - -Post-AGB stars (RV Tauri stars) / PN magnetism
 - -RSG magnetic fields (special focus : Betelgeuse)
- Perspectives and New Challenges

Theoretical predictions for magnetic fields

at the **Surface** of cool and evolved stars :

- Pascoli & Lahoche (2008):
- Magnetic activity in an AGB's core
- \rightarrow toroidal field (10 G @ surface)
- \rightarrow decrease through envelope
- \rightarrow ejection of massive winds

- Dorch (2004), for Red Supergiants (Betelgeuse) :

Generation of a magnetic field from a local dynamo powered by convection

Freytag & Hoefner (2008) 3D simulation of the atmosphere of an AGB

RGB & AGB magnetic fields – new challenges

Kepler Giants with seismic constraints (mixed modes in red giants) : Asterosismic signatures of internal magnetic field (*Fuller et al.* 2015 ; *Cantiello et al.* 2016) Angular momentum transfer from the core to convective envelope (*Mosser et al.* 2012, 2014) => Constraints on/from the dynamo ?

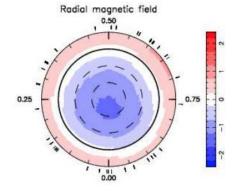
Zeeman Doppler Imaging on few targets so far

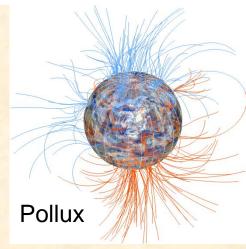
(Donati et al., 1999; Petit et al., 2004)

- RS CVn stars (active binaries)
- FK Com stars (very fast rotators and active giants)

and on Pollux (K0III)

(Aurière et al., 2014, IAU 302 Proc.)


3D MHD simulation of the convective envelope


(with ASH code)

Dipolar configuration

(Palacios & Brun, 2014, IAU 302 Proc.)

Betelgeuse - 5-8 September 2016 - CIES Meudon Magnetic Fields in Cool Evolved Stars (AGB-RSG) – new challenges

Need for long term monitoring + coordination of instruments ?

e.g., RGB/AGB observed for +4yr (Aurière et al. 2015) => derive rotational period => intermittent fields (variations)

Betelgeuse followed over +6yr (Aurière et al. 2010, Petit et al. 2013) => Magnetic Field timescales variations

New molecular tracers (for CSE and surface field)

Linear polarization : complementary diagnostics (for CSE and surface field)

Toward IR spectropolarimetry (SPIRou@CFHT, SPIP@TBL, CRIRES+@VLT)

Toward UV spectropolarimetry (ARAGO/M5-ESA)

Exciting Time Ahead !