Mass and mass loss: lessons from asteroseismology

de Paris

Benoît Mosser Observatoire de Paris LESIA

Solar-like oscillations...

September 2016

Solar oscillation spectrum

Global seismic parameters

Seismic estimates of the stellar mass and radius

September 2016

Seismic scaling relations

From the global seismic parameters stellar masses and radii,

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\odot}}\right)^{1/2}$$
$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\odot}}\right)^{3/2}$$

with $v_{max,O} \sim 3100 \ \mu Hz$; $\Delta v_O \sim 135 \ \mu Hz$; $T_O \sim 5777 \ K$ (seismic scaling relations used since the CoRoT red giant paper Kallinger et al. 2010, A&A 509, A77)

Conservative uncertainties	Statistical	Systematic
dR/R	2-5 %	5 %
dM/M	5-15 %	10 %

Estimates are relevant, precise; calibration effort is ongoing

Calibration of the scaling relations

Calibration of the scaling relations

Comparison of inferred seismic distance and Hipparcos distances

R ,T_{eff} and black body → Luminosity L

L, m_V and dereddening \rightarrow Distance d

Silva-Aguirre et al. 2012, ApJ 757, 99

Stellar evolution

Seismic enriched HR diagram

Period-luminosity relations in M giants

Infrared microlensing surveys (e.g. MACHO, OGLE, DENIS) Variability in M giants lightcurves \rightarrow Period – Luminosity relations

Pending questions:

- Radial / non radial oscillations?
- Solar-like oscillations? (= stochastically excited by turbulent convection)

September 2016

Mode identification, Kepler data at low $\Delta\nu$

Energy equipartition between the different degrees Quadrupole, radial and dipole modes all present in the spectrum

At low frequency Dipole, quadrupole and radial modes form triplets Stello et al 2014, ApJ 788, L10

PL sequences / oscillation pattern

September 2016

Solar and non-solar like oscillations

Period luminosity sequences in M giants

Calibration of the period-luminosity relations based on asteroseismic results

Mass loss

Mass loss; solar-like oscillation regime

In the solar-like oscillation regime $(= \text{ semi-regular variables}, \neq \text{Mira}, \neq \text{LPV})$

- → Seismic determination of R and M
- → Signature of mass loss

Synergies between asteroseismology and upper-RGB and AGB physics still in its infancy

