

MAGNETIC FIELD IN C-RICH EVOLVED STARS

Alizée Duthu

Laboratoire d'Astrophysique de Bordeaux

F.Herpin (LAB, France)

SOURCES

observations: IRAM 30M, EMIR/XPOL

CN = GOOD TRACER

- observed by Bachiller et al. (1997a,b) and Josselin & Bachiller (2003)
- CN paramagnetic species ⇒ Zeeman splitting when magnetic field is present
- N=1-0 line=9 hyperfine components split in two groups (around 113.17 and 113.49 GHz), with 7 main lines. Of those 7, 4 exhibit strong Zeeman effect

Table 1: Zeeman Splittings for CN N=1→ 0 (Crutcher et al. 1996). R.I. stands for Relative Intensity in LTE conditions. (N', J', F')→(N, J, F) $\nu_0 \; (\mathrm{GHz})$ $Z (Hz \mu G^{-1})$ R.I. 1. $(1, 1/2, 1/2) \rightarrow (0, 1/2, 3/2)$ 113.14434 2.1817.4 $2. (1, 1/2, 3/2) \rightarrow (0, 1/2, 1/2)$ 113.17087 -0.312.53. $(1, 1/2, 3/2) \rightarrow (0, 1/2, 3/2)$ 113.19133 0.62 6.24. $(1, 3/2, 3/2) \rightarrow (0, 1/2, 1/2)$ 113.48839 2.1810 21.85. $(1, 3/2, 5/2) \rightarrow (0, 1/2, 3/2)$ 113.49115 0.5627 15.1 6. $(1, 3/2, 1/2) \rightarrow (0, 1/2, 1/2)$ 113.49972 0.628 5.0 7. $(1, 3/2, 3/2) \rightarrow (0, 1/2, 3/2)$ 113.50906 1.62 8

CRUTCHER METHOD

Analysis method by Crutcher et al. (1996): least-squares fit in frequency, simultaneously to all 7 hyperfines lines V spectra ⇒ Distinction between the Zeeman effect and instrumental effect

$$V_i(v) = C_1 I_i(v) + C_2 [dI_i(v)/dv] + C_3 Z_i [dI_i(v)/dv]$$
 i=1, ...,7

With

C₁: gain difference in the telescope between R and L circular polarization

C₂: Bean squint

C3: B_{los}/2

Z: Zeeman factor

ESTIMATION B_{LOS} FOR ALL SOURCES

Object	χ(CN)	d_{CN}	r _*	B_{los}	δB	$B_{r_{\bullet}}$	σ^a	S/N ^b
		AU	AU	mG	mG	G	mK	
RW LMi	3. 10 ⁻⁵	2675-3340 (3-9")	2.6	≤ 3.8		≤ 4.4	7.1	2.6
RY DRa	$5.1 \ 10^{-5}$	61-615 (0.14-1.5)"	1.0	≤ 14.2		≤ 4.8	30.3	2.5
IRC+10216	$6.2 \ 10^{-7}$	2500 (21")	3.3	9.5	5.5	7.2	6.4	39.6
(-10",+20")								
AFGL618	$2.1\ 10^{-6}$	2700 (3")	0.24	6.0	6.0	67.5	6.34	5.6
NGC7027	$2.3 \ 10^{-7}$	10000 (11")	3.0×10^{-4}	≤ 8.0		$\leq 2.7 \ 10^5$	7.80	1.54

^{a)}smooth resolution 320kHz for 2016 observations and 160 kHz for 2006 observations. ^(b)V integrated area devided by rms× δ

MAPPING THE MAGNETIC FIELD IN CW LEO

strong magnetic field detected on the northern part of the ring where the CN seems to be less dense

⇒ CN distribution changed since 1995

Triangles B values and Arrow upper values

most reliable scenario:
magnetic field decreased in
r -1 for AGB
⇒toroidal field

Not working for PPN/PN stars : Jordan et al (2012) find for PN star $B_{los} \sim$ a few 100 G