MAGNETIC FIELD IN C-RICH EVOLVED STARS

Alizée Duthu

Laboratoire d'Astrophysique de Bordeaux
F.Herpin (LAB, France)

SOURCES

observations : IRAM 30M, EMIR/XPOL

CN = GOOD TRACER

- observed by Bachiller et al. (1997a,b) and Josselin \& Bachiller (2003)
- CN paramagnetic species \Rightarrow Zeeman splitting when magnetic field is present
- $\mathbf{N}=1-0$ line=9 hyperfine components split in two groups (around 113.17 and 113.49 GHz), with 7 main lines. Of those 7, 4 exhibit strong Zeeman effect

Table 1: Zeeman Splittings for $\mathrm{CN} \mathrm{N}=1 \rightarrow 0$ (Crutcher et al.1996). R.I. stands for Relative Intensity in

LTE conditions.			
$\left(\mathbf{N}^{\prime}, \mathbf{J}^{\prime}, \mathrm{F}^{\prime}\right) \rightarrow(\mathbf{N}, \mathbf{J}, \mathrm{F})$	$\nu_{0}(\mathrm{GHz})$	$\mathrm{Z}\left(\mathrm{Hz} \mu \mathrm{G}^{-1}\right)$	R.I. $Z \times$ R.I.
1. $(1,1 / 2,1 / 2) \rightarrow(0,1 / 2,3 / 2)$	113.14434	2.18	8 17.4
2. $(1,1 / 2,3 / 2) \rightarrow(0,1 / 2,1 / 2)$	113.17087	-0.31	82.5
3. $(1,1 / 2,3 / 2) \rightarrow(0,1 / 2,3 / 2)$	113.19133	0.62	$10-6.2$
4. $(1,3 / 2,3 / 2) \rightarrow(0,1 / 2,1 / 2)$	113.48839	2.18	10 21.8 cato
5. $(1,3 / 2,5 / 2) \rightarrow(0,1 / 2,3 / 2)$	113.49115	0.56	27 15.1
6. $(1,3 / 2,1 / 2) \rightarrow(0,1 / 2,1 / 2)$	113.49972	0.62	8 5.0
7. $(1,3 / 2,3 / 2) \rightarrow(0,1 / 2,3 / 2)$	113.50906	1.62	13.0

CRUTCHER METHOD

Analysis method by Crutcher et al. (1996) : least-squares fit in frequency, simultaneously to all 7 hyperfines lines V spectra
\Rightarrow Distinction between the Zeeman effect and instrumental effect
$\mathbf{V}_{\mathrm{i}}(v)=\mathrm{C}_{1} \mathrm{l}_{\mathrm{i}}(v)+\mathrm{C}_{2}\left[\mathrm{dl}_{\mathrm{i}}(v) / \mathrm{d} v\right]+\mathrm{C}_{3} \mathrm{Z}_{\mathrm{i}}\left[\mathrm{dl}_{\mathrm{i}}(v) / \mathrm{d} v\right] \quad \mathrm{i}=1$, ...,7

With
C_{1} : gain difference in the telescope between R and L circular polarization
C_{2} : Bean squint
C3: $\mathrm{B}_{\text {los }} / 2$
Z: Zeeman factor

ESTIMATION B los FOR ALL SOURCES

Object	$\chi(C N)$	$d_{C N}$ AU	r_{*} AU	$B_{\text {los }}$ mG	δB mG	$B_{r .}$ G	σ^{a} mK	$\mathrm{S}^{\mathbf{S} / \mathrm{N}^{b}}$
RW LMi	3.10^{-5}	$2675-3340\left(3-9^{\prime \prime}\right)$	2.6	≤ 3.8		≤ 4.4	7.1	2.6
RY DRa	5.110^{-5}	$61-615(0.14-1.5)^{\prime \prime}$	1.0	≤ 14.2		≤ 4.8	30.3	2.5
IRC+10216	6.210^{-7}	$2500\left(21^{\prime \prime}\right)$	3.3	9.5	5.5	7.2	6.4	39.6
$\left(-10^{\prime \prime},+20^{\prime \prime}\right)$								
AFGL618	2.110^{-6}	$2700\left(3^{\prime \prime}\right)$	0.24	6.0	6.0	67.5	6.34	5.6
NGC7027	2.310^{-7}	$10000\left(11^{\prime \prime}\right)$	3.0×10^{-4}	≤ 8.0		$\leq 2.710^{5}$	7.80	1.54

MAPPING THE MAGNETIC FIELD IN CW LEO

strong magnetic field detected on the northern part of the ring where the CN seems to be less dense
\Rightarrow CN distribution changed since 1995

most reliable scenario : magnetic field decreased in

$$
\begin{aligned}
& r^{-1} \text { for AGB } \\
\Rightarrow & \text { toroidal field }
\end{aligned}
$$

Not working for PPN/PN stars: Jordan et al (2012) find for PN star $B_{\text {los }} \sim$ a few 100 G

Triangles B values and Arrow upper values

