

Masers and Betelgeuse Liz Humphreys (ESO)

Thanks to Anita Richards, Malcolm Gray and many!

Betelgeuse Workshop 2016

Masers (Microwave Amplification by Stimulated Emission of Radiation)

- Compact, high brightness temperature masers enable study at high angular resolution (e.g. < 1 milliarcsecond)
- Present in: Evolved Stars, AGN, Star Formation, Supernova Remnants, ...
- Species include: SiO, H₂O, OH, HCN, CH₃OH, SiS, NH₃, H recombination masers

• Uses include:

- Physical conditions (line ratios from >=2 transitions, simultaneous)
- Dynamics (3D velocities from proper motions)
- Magnetic fields
- Clumping studies

Betelgeuse Workshop 2016

Maser Action: Population Inversion & More

Maser Action: Amplification

Competitive Gain

IMPORTANCE OF INCLUDING SATURATION IN MASER RADIATIVE TRANSFER CODES

Maser Beaming

DOMINANT RAY HAS FASTEST STIMULATED EMISSION RATE (LONGEST PATH LENGTH)

FOR CROSSING RAYS: DOMINANT RAY "STEALS" THE MAJORITY OF POPULATION INVERSION BEFORE THE WEAKER RAYS HAVE TIME

LEADS TO HIGHLY BEAMED EMISSION (MASERS STIMULATE INTO THE SAME DIRECTION)

Masers in Evolved Stars

Schematic view of an AGB star

- SiO masers: within a few R_{*} of the photosphere
- Water masers: 10 to 100 R*
- OH masers (mainline): 10 - 100 R*
- OH masers (1612MHz): another order of magnitude from the star

Le Bertre, ne Hronne et vienne

Masers in Red Supergiants

Are B-fields dynamically-significant in the extended atmosphere?

SiO Masers: throughout ALMA/APEX Bands

VY CMa J=4-3; 172 GHz

Betelgeuse Workshop 2016

Humphreys et al. (in prep)

SiO Masers

- SiO masers probe the extended atmosphere
- Masers typically thought to arise from vibrationally excited states (>1800 K)
- These require high densities and temperatures
- Tk ~ 1500 K, n(H2) ~ 10^{10+/-1} cm⁻³

ALMA Observations of the Extended Atmosphere: Mira AB

Plume of SiO v=0 emission

ALMA 15 km Bands 3 and 6: SiO and H₂O lines

Wong et al. 2016; Wittkowski, Humphreys et al.

ALMA Observations of the Extended Atmosphere: Mira AB

- Key Findings:
- At this epoch, mixed infall (7 km/s) and outflow (4 km/s)
- Molecular absorption towards the stellar continuum is detected
- SiO depletes at about 4 R*, and at temperatures < 600 K, so dust interior to this radius is not likely to be purely silicate based
- Clear evidence for maser emission in several transitions future constraints on the magnetic field

water Masers: mostly studied at 22 GHz so far

Freq.	Transition	Vib. State	Ortho/ Para	E _u /k (K)	CSE	SFR	EXG	Primary Reference
		Juie	. uru					
22.235	6 ₁₆ -5 ₂₃	G	0	644	Y	Y	Y	Cheung et al. (1969)
96.261	4 ₄₀ -5 ₃₃	ν2	Р	3065	Y			Menten & Melnick (1989)
183.308	3 ₁₃ -2 ₂₀	G	Р	205	Y	Y	Y	Waters et al. (1980)
232.687	5 ₅₀ -6 ₄₃	ν2	0	3463	Y			Menten et al. (1989)
293.439	6 ₆₁ -7 ₅₂	ν2	0	3935	Y			Menten et al. (2006)
321.226	10 ₂₉ -9 ₃₆	G	0	1862	Y	Y		Menten & Melnick (1991)
325.153	5 ₁₅ -4 ₂₂	G	Р	470	Y	Y		Menten & Melnick (1991)
336.228	5 ₂₃ -6 ₁₆	v ₂	0	2956	Y			Feldman et al. (1992)
354.885	17 _{4 13} -16 _{7 10}	G	0	5782	Y			Feldman et al. (1992)
380.194	4 ₁₄ -3 ₂₁	G	0	324		Y		Phillips et al. (1980)
437.347	7 ₅₃ -6 ₆₀	G	Р	1525	Y	Y		Melnick et al. (1993)
439.151	6 ₄₃ -5 ₅₀	G	0	1089	Y	Y	Т	Melnick et al. (1993)
470.889	6 ₄₂ -5 ₅₁	G	Р	1091	Y	Y		Melnick et al. (1993)
658.007	1 ₁₀ -1 ₀₁	v ₂	0	2361	Y			Menten & Melnick (1989)

Slide courtesy of Anita Richards

Cloud size depends on star size

- Cloud radius $\sim 1R_{\rm H}$
 - Ten-fold range of R_H
 - Assuming radial expansion, birth radius 5%–10% *R*_H
- Must be determined by stellar properties
 - Not dust cooling/ microphysics
 - Would be same scale for all H's
 - Star spots?
 - Convection cells?
 - *Chiavassa* models

Mm and submm water masers in evolved stars: first mapping by Richards et al. (2014; ALMA)

HIFI Water & OH in Betelgeuse

Species	Transition	$egin{array}{c} E_{ m upp}^{\dagger} \ ({ m K}) \end{array}$	Rest freq. (GHz)	Peak ⁽⁶⁾ (mK)	Betelgeuse Integ. intensity (K km s ⁻¹)	Vel. range ⁽²⁾ LSR (km s ⁻¹)
¹² CO	J = 6-5 J = 10-9 J = 16-15	116 304 752	691.473 1151.985 1841.346	654(17) ⁽³⁾ 762(54) ⁽³⁾ 866(58) ⁽³⁾	13.2 13.4 13.6	[-12; 24] [-12; 21] [-11; 22]
¹³ CO	J = 6-5 J = 10-9 J = 16-15	111 291 719	661.067 1101.350 1760.486	136(7) ⁽³⁾ 160(20) ⁽³⁾ 187(50) ⁽⁵⁾	2.83 2.45 2.68	[-10; 18] [-9; 23] [-9; 22]
o-H ₂ O	$J_{K_{a},K_{c}} = 1_{1,0} - 1_{0,1}$ $J_{K_{a},K_{c}} = 3_{2,1} - 3_{1,2}$	27 271	556.936 1162.912	35(4) ⁽⁴⁾ <112 ^(1,5)	0.61	[-6; 21]
<i>p</i> -H ₂ O	$J_{K_{\rm a},K_{\rm c}} = 1_{1,1} - 0_{0,0}$	53	1113.343	72(16) ⁽⁴⁾	1.54	[-9; 21]
$OH {}^{2}\Pi_{1/2}$	J = 3/2 - 1/2	270	1834.747	208(34)(4)	4.45	[-10; 20]

The 556 GHz line is predicted to be a maser by Gray et al. (2016)

Eu = 27 K, 16 Jy

