Surface and Circumstellar Magnetism of Cool Evolved Stars
recent results and open questions

ESPaDOnS@CFHT Narval@TBL 30m@IRAM ALMA@ESO

Agnès Lèbre, University of Montpellier, France
Agnes.Lebre@umontpellier.fr

Betelgeuse - 5-8 September 2016 - CIES Meudon
The old AGB picture! IAU Symposium in Montpellier (1998)

- Radiation
- Pulsation
- Shock waves
- Energy dissipation
- Complex chemistry
- Pressure driven wind
- Dust accelerated driven wind
- Mass loss
Etoile Mira
Outline:

- **Cool Evolved stars**: sharing main characteristics and physical processes

- **Magnetism in Circumstellar Envelopes** (Radioastronomy)

- **Surface Magnetic Fields** (Spectropolarimetry)

 - Tracing Zeeman effect with circular polarisation (Stokes V)

- **RGB & early-AGB magnetic fields**

- **TP-AGB magnetic fields** (Mira stars)

- **Post-AGB stars (RV Tauri stars) / PN magnetism**

- **RSG magnetic fields** (special focus: Betelgeuse)

- **Perspectives and New Challenges**

 - Active giants (global dynamo)
 - Descendant of Ap stars (magneto-convection)

 - Amplification by shock waves?

 - Turbulent dynamo
Cool Evolved Stars

Main characteristics:
RGB, RSG stars: core He-burning phase
AGB stars: He- and H-shell burning phase

\[T_{\text{eff}} = 4000-2500 \text{ K} ; \log g = 0 - 2 \]

Convection:
Large-scale convective motions in an extended atmosphere, with a few giant cells covering the surface

(Schwarzschild, 1975)

Radiative hydrodynamic simulations
(Chiavassa+ 2010)

In RSG: convection is expected to generate supersonic motions and shocks
In AGB (Miras): pulsation is expected to generate shocks (also in some Post-AGB)

=> convection-pulsation
Cool Evolved Stars

Evolutionary path of an intermediate mass star before its transition toward the Planetary Nebulae stage.

Convection
Large-scale convective motions in an extended atmosphere, with few giant cells covering the surface (Freytag & Höfner, 2008)

Pulsation (Mira/RV Tauri) periodically generate radiative shocks waves => convection-pulsation

Mass loss
Heavy mass loss: radiation pressure on dust (Höfner, 2011) levitation due to shocks

WHAT ELSE ... ?
During the transition from AGB to PN:

- Severe change of the morphology of the circumstellar envelope (departure from spherical symmetry)

- Evidences of magnetically collimated outflows

Binarity? Magnetic fields? Both?

and

Observational evidences of magnetic fields around AGB, post-AGB, pre-PNe and PNe.
Outline:

- Cool Evolved stars: sharing main characteristics and physical processes

 - Magnetism in Circumstellar Envelopes (Radioastronomy)

- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - RGB & early-AGB magnetic fields
 - TP-AGB magnetic fields (Mira stars)
 - Post-AGB stars (RV Tauri stars) / PN magnetism
 - RSG magnetic fields (special focus: Betelgeuse)

- Perspectives and New Challenges
Circumstellar Magnetic Fields

Magnetic field strength and structure from

Circular polarization (generated through Zeeman splitting)
=> Line of sight component of Magnetic Field + constraints on its geometry

Best tracers
(compactness and strength): maser circular polarization (sub)-mm regime

typical molecules probing different zones in CSE

SiO, H$_2$O, OH for O-rich stars

CN lines for C-rich stars
(Herpin, 2009 + PhD. A. Duthu)

1rst attempt to detect Zeeman splitting of non-maser molecular lines

Betelgeuse - 5-8 September 2016 - CIES Meudon
Magnetic Field strength in AGB envelopes

O-rich Miras:
- SiO at 2 R^*
 - $B \sim 3.5$ (up to 10s) G
- Assuming Zeeman
- H_2O at $\sim 5\text{-}80$ AU
 - $B \sim 0.1 \text{-} 2$ G
- OH at $100\text{-}10\ 000$ AU
 - $B \sim 1\text{-}10$ mG

C-rich Miras:
- CN at $\sim 2\ 500$ AU
 - $B \sim 7\text{-}10$ mG

Geometry of the field:
- Toroidal field $B \sim 1/r$

→ **Extrapolation ?**
the magnetic field strength at the stellar surface of Miras could be of the order of a few G.
Circumstellar Magnetic Fields

Magnetic field strength and structure from

Linear polarization (generated through anisotropy with/without magnetic field)

=> Structure of the plane of sky component of Magnetic Field

Observed both
- in the dust (through aligned grains) => strength of MF
- in the molecular lines (through radiation anisotropy and small Zeeman splitting)
 = Goldreich-Kylafis effect *(Kylafis, 1983)*

CO & SiO, H$_2$O, OH masers => 3D field morphology (in few specific cases)

e.g., 1rst map (SMA) of GK effect in CO lines on the Mira IK Tau *(Vlemmings+2012)*

IK Tau shows consistent large scale field from thermal SiO out to CO(2-1)

Now with ALMA !

On the Mira X Cyg
(Tafoya, Vlemmings in prep.)

Toward a full description of the circumstellar magnetic field structure !
Outline:

- Cool Evolved stars: sharing main characteristics and physical processes

- Magnetism in Circumstellar Envelopes (Radioastronomy)

- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - RGB & early-AGB magnetic fields
 - TP-AGB magnetic fields (Mira stars)
 - Post-AGB stars (RV Tauri stars) / PN magnetism
 - RSG magnetic fields (special focus: Betelgeuse)

- Perspectives and New Challenges
Surface Magnetic Fields *(spectropolarimetry)*

ESPaDOnS@CFHT
2004+
3.60m Telescope

Narval@TBL
2006+
2m Telescope

HARPSpol@ESO
2009+
3.60m Telescope

Spectral Range : 375 – 1050 nm
Spectral Resolution : 65 000

Spectral Range : 380 – 690 nm
Spectral Resolution : 115 000

Simultaneous measurements in two polarisation states :

⇒ Stokes I (unpolarised) spectrum
+ Stokes V (circular)
or Stokes U (linear) polarised spectrum
or Stokes Q (linear)

⇒ Polarisation (circular or linear) **within spectral** (atomic) **lines**

Polarimetric sensitivity ~ 10^{-4} of the unpolarised continuum
Estimation of B_l, the **Longitudinal Component of the Magnetic Field**:

$$B_l(G) = -2.14 \times 10^{11} \frac{\int vV(v) \, dv}{\lambda_0 g_{eff} c \int [I_c - I(v)] \, dv}$$

Mean Zeeman shift of a transition

$$\Delta \lambda_B = \frac{\lambda_0^2 e B}{4\pi m_e c^2} = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B$$

g$_{eff}$: Landè factor (sensitivity of a transition to B)

If **weak magnetic field** (< 100 G) :

Polarised signatures undetectable at the level of individual lines

$=>$ **A multiplex approach**

over the observed spectral range (thousands of atomic lines involved through a LSD Mask)

The Least Square Deconvolution (L.S.D.)

(Rees & Semel, 1979)

POLLUX (K0III)

(Aurière et al., 2009)
Sample of 48 single G-K giants (24 with activity signatures)

29 Zeeman detections (with Narval/ESPaDOnS)

The most active magnetic giants are concentrated in a «Magnetic Strip»?

1rst Dredge-up and Core Helium burning phases.

Evolutionnary models
Solar metallicity with rotation (from C. Charbonnel et al.)

Convective turnover timescale
\[T_{\text{max}} = \frac{\alpha H_p}{V_{\text{conv}}} \]
Preliminary trends with rotation from 16 G-K Giants
with known rotational period (Prot from few 10s of days to few 100s of days)

Ap star descendant candidates:
fossil field interacting with convection
(Aurière et al., 2011; Tsetkova et al., 2013)

α-ω type dynamo in these stars with Prot < 200 days

Unlikely for Pollux: Sub-Gauss regime!

(Aurière et al., 2015)
Preliminary trends with rotation from 16 G-K Giants
with known rotational period (Prot from few 10s of days to few 100s of days)

Ap star descendant candidates:
fossil field interacting with convection
(Aurière et al., 2011; Tsetkova et al., 2013)

Ro:
Rossby number
Ratio of inertial to Coriolis force

α-ω type dynamo in these stars with Prot < 200 days

(Aurière et al., 2015)

\[Ro = \frac{\text{Prot}}{\tau_{\text{max}}} \]
Exploration of unbiased sample (magV < 4)

40 Red Giants
(with Narval/ESPaDOnS)

Magnetic RGB/AGB with $B_l < 1$ Gauss (e.g. Pollux)

« 2nd magnetic strip »:

Tip RGB / AGB

- low surface rotation
- convection

⇒ Local dynamo ?

Transitory fields ?

~ 50 % of RGB/AGB with a magnetic field at the Gauss level

Magnetic field and activity is more common than expected!
Tip of AGB - Post-AGB stars - PNe

Detection of magnetic fields from Masers SiO & CN lines in their environment *(Vlemmings+ 2011)*

=> Geometry of the field : \(B \sim 1/r \) ...
(Herpin et al. 2006, 2009; Sabin et al., 2013)

=> Extrapolation toward the photosphere...

Mira Stars

Common picture

Hydrogen emission lines (Balmer) => shock wave propagation (atmospheric dynamics)

Time variable linear polarization associated to Balmer lines *(Fabas et al., 2011)*

ο Ceti and *R Leo* (M-type Miras)

Photospheric magnetic field (\(~ a \) few G) expected from theoretical works *(Thirumalai & Heyl, 2013)* but not detected (so far ?) with Narval

χ Cyg (S-type Mira)

Detection of a weak photospheric magnetic field *(Lèbre et al., 2014)*

=> Connexion surface magnetic field - atmospheric shock wave
First detection of a surface magnetic field on a Mira star

Narval observations of χ Cyg around its 2012 maximum light

Stokes V signal: associated to the blue component of the I profile
Stokes I profile: typical line doubling of metallic lines due to a shock wave in the atmosphere.

Definite Detection
χ^2 = 1.81 , fap = 5.2 \times 10^{-10}

Surface field estimation: 2-3 G

Post-AGB stars (incl. Pulsating RV Tauri stars)

RV Tauri stars
The first positive detections of a photospheric magnetic field *(Sabin et al., 2015)*

U Mon (ESPaDOnS april 2014)
pulsation period ~ 92 days

Bl = 10.2 ± 1.7 G

Impact of atmospheric shock waves?

R Sct (Narval july 2014)
pulsation period ~ 142 days

Bl = 0.6 ± 0.6 G

Prediction of maser strengths in the envelope of U Mon?

Favoring again toroidal field *(Sabin et al., 2015)*
Planetary Nebulae

small-scale structures due to magnetic fields
e.g. Spirograph nebula *(Huggins et al. 2011)*

Central Star of Planetary Nebulae

From FORS2@VLT (low resolution spectropolarimetry):
Early controversial detections *(Jordan+2012 ; Leone+2014)*

No strong global magnetic field (KG !) from a sample of 12 bright CSPN
but marginal and weak fields (below 100 G) in 3 targets *(Steffen+2014)*

Magnetic PN Shaping still not proven !

Time to move to the massive counterparts … RSG !
Magnetic fields in Red Super Giants (RSG)

Red Supergiants:

Are they all magnetic stars?

Common occurrence of magnetic fields at the (sub-)Gauss level in F- to K- type RSG.

(Grunhut et al. 2010)

In M-type RSG?
Detection of Surface Field in Betelgeuse (M-type RSG)

\[P_{\text{rot}} = 17 \text{ years} \]

\[R_0 \sim \frac{P_{\text{rot}}}{\tau_{\text{conv}}} \]

\[\Rightarrow R_0 \sim 90 \]

not able to sustain a \(\alpha-\omega \) type dynamo

The large-scale convective motions can generate small-scale dynamo action, and thus transitory fields.

Geometry of magnetic field remains unknown!
Variations of the Magnetic Field of Betelgeuse (2009-2012)

Field variability < 1 month !
(stellar rotation 17 years !)
Consistent with convective timescales
(Dorch & Freytag, 2004)

(Bedecarrax et al., 2013) + long term monitoring in progress with a Large program Narval
(Mathias et al., in preparation)
Field Variations at the Surface of Betelgeuse
New DetectionS of Surface Field in other M-type RSG

α¹ Her, 11Jul15 (M5I)

\[B_l = -4.3 \pm 0.4 \text{ G} \]

µ Cep, 01Sep15 (M2I)

\[B_l = 2.1 \pm 0.6 \text{ G} \]

CE Tau, 06Mar15 (M2I) (Tessore et al., in preparation)

\[B_l = 0.2 \pm 0.5 \text{ G} \]

ρ Cas, 08Sep15 (G2I)

No Detection

Betelgeuse - 5-8 September 2016 - CIES Meudon
Outline:

-Cool Evolved stars: sharing main characteristics and physical processes

- Magnetism in Circumstellar Envelopes (Radioastronomy)

- Surface Magnetic Fields (Spectropolarimetry)
 - Tracing Zeeman effect with circular polarisation (Stokes V)
 - RGB & early-AGB magnetic fields
 - TP-AGB magnetic fields (Mira stars)
 - Post-AGB stars (RV Tauri stars) / PN magnetism
 - RSG magnetic fields (special focus: Betelgeuse)

- Perspectives and New Challenges
Theoretical predictions for magnetic fields at the surface of cool and evolved stars:

- Pascoli & Lahoche (2008):
 Magnetic activity in an AGB’s core
 → toroidal field (10 G @ surface)
 → decrease through envelope
 → ejection of massive winds

- Dorch (2004), for Red Supergiants (Betelgeuse):
 Generation of a magnetic field from a local dynamo powered by convection

Freytag & Hoefner (2008)
3D simulation of the atmosphere of an AGB
RGB & AGB magnetic fields – new challenges

Kepler Giants with seismic constraints (mixed modes in red giants):
Asterosismic signatures of internal magnetic field *(Fuller et al. 2015 ; Cantiello et al. 2016)*
Angular momentum transfer from the core to convective envelope *(Mosser et al. 2012, 2014)*

=> Constraints on/from the dynamo ?

Zeeman Doppler Imaging on few targets so far *(Donati et al., 1999 ; Petit et al., 2004)*
- RS CVn stars (active binaries)
- FK Com stars (very fast rotators and active giants)

and on Pollux (K0III)

(Aurière et al., 2014, IAU 302 Proc.)

3D MHD simulation of the convective envelope
(with ASH code)

Dipolar configuration

(Palacios & Brun, 2014, IAU 302 Proc.)
Magnetic Fields in Cool Evolved Stars (AGB-RSG) – new challenges

Need for long term monitoring + coordination of instruments?

e.g., RGB/AGB observed for +4yr (Aurière et al. 2015)
 => derive rotational period
 => intermittent fields (variations)

Betelgeuse followed over +6yr (Aurière et al. 2010, Petit et al. 2013)
 => Magnetic Field timescales variations

New molecular tracers (for CSE and surface field)

Linear polarization: complementary diagnostics (for CSE and surface field)

Toward IR spectropolarimetry
(SPIRou@CFHT, SPIP@TBL, CRIRES+@VLT)

Toward UV spectropolarimetry (ARAGO/M5-ESA)

Exciting Time Ahead!